Self-assembly of conjugated polymer-Ag@SiO2 hybrid fluorescent nanoparticles for application to cellular imaging.
نویسندگان
چکیده
A novel fluorescent nanoparticle was prepared via a simple self-assembly technique based on water-soluble conjugated polymers (CPs) and Ag@SiO(2) core-shell nanoparticles. Core-shell nanoparticles with silver NPs core show a unique property referred to as metal-enhanced fluorescence (MEF). In the present work, the cationic conjugated polymer poly[9,9'-bis(6''-(N,N,N-trimethylammonium)-hexyl) fluorene-2,7-ylenevinylene-co-alt-1,4-phenylene dibromide] (PFV) was hybridized with Ag@SiO(2) NPs via simple self-assembly procedure, and given high stability, monodispersity. The fluorescence intensity of PFV after assembling on Ag@SiO(2) core-shell NPs is enhanced 1.3-fold compared with the fluorescence intensity of PFV assembled on silica NPs without silver cores for the MEF property of the Ag@SiO(2) nanostructure. Nanocomposite with bright fluorescence was obtained. Moreover, the nanocomposition exhibits good monodispersity and low cytotoxicity, which promote their application in cellular imaging. Furthermore, fluorescent nanoparticles with amendable peripheral surfaces can also be potentially obtained because of the easy modification property of CPs and give potential application in selective biological sensing and imaging.
منابع مشابه
A general approach to prepare conjugated polymer dot embedded silica nanoparticles with a SiO2@CP@SiO2 structure for targeted HER2-positive cellular imaging.
We report on a one-step synthesis of conjugated polymer (CP) embedded silica nanoparticles (NPs) with a SiO2@CP@SiO2 structure by combination of a precipitation method and a modified Stöber approach. Four types of CPs are employed to demonstrate the versatility of the developed strategy, yielding fluorescent silica NPs with emission across the visible spectrum. Field emission transmission elect...
متن کاملTrastuzumab-Conjugated Liposome-Coated Fluorescent Magnetic Nanoparticles to Target Breast Cancer
OBJECTIVE To synthesize mesoporous silica-core-shell magnetic nanoparticles (MNPs) encapsulated by liposomes (Lipo [MNP@m-SiO2]) in order to enhance their stability, allow them to be used in any buffer solution, and to produce trastuzumab-conjugated (Lipo[MNP@m-SiO2]-Her2Ab) nanoparticles to be utilized in vitro for the targeting of breast cancer. MATERIALS AND METHODS The physiochemical char...
متن کاملFluorescent multiblock π-conjugated polymer nanoparticles for in vivo tumor targeting.
Highly fluorescent multiblock conjugated polymer nanoparticles with folic acid surface ligands are highly effective for bioimaging and in vivo tumor targeting. The targeted nanoparticles were preferentially localized in tumor cells in vivo, thereby illustrating their potential for diagnostic and therapeutic applications.
متن کاملHybrid silica-coated plasmonic-magnetic biomarkers
Hybrid magnetic/plasmonic nanoparticles possess properties originating from each individual material. Such properties are beneficial for biological applications including bio-imaging, targeted drug delivery, in vivo diagnosis and therapy. Limitations regarding their stability and toxicity, however, challenge their safe use. Here, the one-step flame synthesis of composite SiO2-coated Ag/Fe2O3 na...
متن کاملConjugated Polymer Nanoparticles for Bioimaging
During the last decade, conjugated polymers have emerged as an interesting class of fluorescence imaging probes since they generally show high fluorescence brightness, high photostability, fast emission rates, non-blinking behavior and low cytotoxicity. The main concern related to most conjugated polymers is their lack of hydrophilicity and thereby poor bio-availability. This can, however, be o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 26 14 شماره
صفحات -
تاریخ انتشار 2010